TR-02-24 COW Dec 2 2024 Consultant presentation

Burlington Transit Study to explore Fare-Free Transit

Committee of the Whole Presentation

December 2, 2024

Our Approach to the Fare-free Study

Fare Free Transit Initiatives

Free transit investments have been made by Burlington City Council to grow ridership:

Regional Fare Integration

Customer Journey: Regional Trips

Other Fare-free Initiatives

Canada

Bow Valley (Canmore/Banff)

- Local routes/residents only
- Driving/parking restrictions in Banff
- Still maintains > 50% cost recovery
- Orangeville
- \$1.1M annual operating budget
- ±10% cost recovery in 2022

United States

Wide variety of systems

• Mix of full / limited fare-free or temporary pandemic response

- Typical cost recovery <20%, many in low teens or single digits
- Broader revenue sources

Fare-Free Experiences

Revenue Loss

Overall impact depends on current cost recovery

Customer experience risk

Unless implementation is paired with effective planning and strategic service increases

Ridership Increases ~30-60% increase in ridership

Service Efficiency

Greater service efficiency (more people per bus)

Key Takeaway: The success of fare-free transit depends on effective service planning to meet growing demand.

Approach

Ridership Projection

- Fare-free
 - Population growth
 - Elasticity research
 - Demographic factors
- Service expansion
 - Developed prototype network
 - Assessed service elasticities

Service and Load Analysis

- Identify capacity by routes times and trips
- Identify trips that will exceed capacity
- Identify required service increases
- Iterative ridership projection from service increase

Resource and Cost Estimates

- Additional service hours
- Operators
- Other operations staff
- Fare collection costs
- Capital costs
 - New vehicles
 - Fare collection costs

Layers to Financial Complexity

1st Level

Savings from eliminating fare collection requirements

- · Cost to maintain service quality to keep up with demand
- Better service efficiency = higher marginal maintenance and fuel costs
- 2nd Level Specialized costs increase disproportionately less spare capacity to absorb increases
 - Ontario gas tax fund calculations moderate increase
 - Alternative funding can not be relied upon
- 3rd Level Capital cost estimates

Comparison Highlights

	2029		2034	
	Fare-Free	Service expansion	Fare-Free	Service expansion
Ridership	6,200,000	5,469,000	6,947,000	7,941,000
Boardings	7,303,000	6,442,000	8,198,000	9,358,000
Net Municipal Operating Cost	\$43,080,000	\$33,999,000	\$53,734,000	\$47,140,000
Net Municipal Operating Cost	\$5.90	\$5.28	\$5.75	\$5.04
per Boarding (inc. gas tax)				
Capital Cost				
(5-year totals with 63%	\$24,285,000	\$30,159,000	\$11,434,000	\$42,700,000
subsidy)				

Notes:

- Both alternatives exceed DC study pro-rated targets
- Fare-free has higher net municipal cost: total and per boarding
- Fare-free transit generates more transit use than service expansion (but only until 2031)

Boardings Target

- DC interim target for 2034 is about 7.7 million boardings to stay on track to 2051 modal share objective
- Both fare-free and service investment exceed this interim target through 2034
- From about 2031, service expansion begins to outperform fare-free boardings
- From about 2037, fare-free will begin to track below DC interim target

Sample of Estimated Theoretical Annual Fare-Free Transit Economic Benefits

Transit Benefit	Description	
Individual transportation savings	Fare-free transit has no financial	
	transportation cost for riders	
Business productivity gain from	Increased employment participation by	
enhanced workforce access	non-drivers.	
Reduction in road traffic (congestion	Mode shift can create shorter travel	
reduction)	times for everyone	
Active travel health benefits	Promotes a more active lifestyle for	
	transit passengers i.e. walking to a bus	
	stop	
Enhanced Road Safety	Reductions in collisions from mode shift	

Community benefits are greater for service investment

Where is fare-free ridership coming from?

- More from inducing trips from existing riders
- More from walking/cycling = greater negative benefit
- Lower mode shift rate than service expansion

What is the local economic impact?

- Less benefit from federal and provincial funding
- Less benefit due to decline in funding from external users

Sustainability – Fare-Free has higher risks

Risk

- Service deterioration
- Planning direction and control
- Financial sustainability
 - Greater future funding commitment
 - Systems with less fare revenue less likely to adapt service to demand

Political and community support considerations

- Rapid cost increase could create backlash
- Rapid ridership increase could increase community support
- Faster youth ridership growth improves sustainability

What about Gas Tax?

A municipality's gas tax allocation is based on its share of provincial population and ridership totals.

- If an agency grows at the average provincial rate, it's allocation will not increase.
- If population and ridership change at more or less than the provincial average, then allocations will balance between "gainers" and "losers"

With fare-free, Burlington's share should increase by up to \$1 million over time

Hamilton

3%

Otttawa

9%

York /

Brampton /

MiWay

16%

PRESTO Implications

Fare payment (92% of rides)
Regional integration
Metrolinx subsidy transfers (One Fare)
Detailed data collection
Passenger identification/classification

Annual fee (portion of revenue) Hardware costs for new buses

PRESTO costs to Burlington:

Conclusion

Financial: Fare-free transit is costlier than service investment for similar benefits.

Community Benefits: Fare-free transit increases ridership and provides community benefits, but its effectiveness compared to service investments is uncertain.

Higher Risk: Fare-free transit has greater potential for service and funding challenges compared to service investment.

Sustainability: Foregoing revenue threatens service sustainability when additional funding is required

A final word . . .

- Sounds good, but only if it doesn't replace investments in the system to improve it. Given a choice between eliminating fares and increasing frequency to make the service convenient, I would choose to invest in service improvements over fare-free transit.
 - Community survey response